Under the patronage of:

Journal Metrics


Impact factor (2022): 2.1

5.4
2023CiteScore
 
75th percentile
Powered by  Scopus


More about CiteScore


Source Normalized Impact per Paper (SNIP): 0.474


SCImago Journal Rank (SJR): 0.377

 
 

Impact of Battery Ageing on an Electric Vehicle Powertrain Optimisation

Original scientific paper

Journal of Sustainable Development of Energy, Water and Environment Systems
Volume 2, Issue 4, December 2014, pp 350-361
DOI: https://doi.org/10.13044/j.sdewes.2014.02.0028
Daniel J. Auger , Maxime F. Groff, Ganesh Mohan, Stefano Longo, Francis Assadian
Centre for Automotive Engineering, Cranfield University, Bedfordshire, United Kingdom

Abstract

An electric vehicle’s battery is its most expensive component, and it cannot be charged and discharged indefinitely. This affects a consumer vehicle’s end-user value. Ageing is tolerated as an unwanted operational side-effect; manufacturers have little control over it. Recent publications have considered trade-offs between efficiency and ageing in plug-in hybrids (PHEVs) but there is no equivalent literature for pure EVs. For PHEVs, battery ageing has been modelled by translating current demands into chemical degradation. Given such models it is possible to produce similar trade-offs for EVs. We consider the effects of varying battery size and introducing a parallel supercapacitor pack. (Supercapacitors can smooth current demands, but their weight and electronics reduce economy.) We extend existing EV optimisation techniques to include battery ageing, illustrated with vehicle case studies. We comment on the applicability to similar EV problems and identify where additional research is needed to improve on our assumptions.

Keywords: Electric vehicles, Battery, Ageing, State-of-health, Power train optimisation

Creative Commons License
Views (in 2024): 829 | Downloads (in 2024): 169
Total views: 8168 | Total downloads: 3291

DBG